Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Dermatol ; 33(2): e15013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38414090

RESUMO

PD-1 checkpoint inhibitors are used as systemic immunotherapy for locally advanced and metastatic cutaneous squamous cell carcinoma (SCC); however, improved treatment efficacy is urgently needed. In this study, we aimed to investigate the effect of combining systemic anti-PD-1 treatment with adjuvant ablative fractional laser (AFL) in a spontaneous SCC mouse model. Tumours induced by ultraviolet radiation in the strain C3.Cg-Hrhr /TifBomTac were divided into four groups: anti-PD-1-antibody+AFL (n = 33), AFL alone (n = 22) anti-PD-1-antibody alone (n = 31) and untreated controls (n = 46). AFL was given at Day 0 (100 mJ/mb, 5% density), while anti-PD-1-antibody (ip, 200 µg) at Days 0, 2, 4, 6 and 8. Response to treatment was evaluated by tumour growth, survival time and by dividing response to treatment into complete responders (clinically cleared tumours), partial responders (reduced tumour growth rate compared to untreated controls) and non-responders (no decrease in tumour growth rate compared to untreated controls). The strongest tumour response was observed following the combination of systemic anti-PD-1 treatment combined with laser exposure, resulting in the highest percentage of complete responders (24%) compared with untreated controls (0%, p < 0.01), AFL monotherapy (13%, p > 0.05) and anti-PD-1-antibody monotherapy (3%, p > 0.05). Moreover, all three treatment interventions demonstrated significantly reduced tumour growth rates compared with untreated controls (p < 0.01), and the mice had significantly longer survival times (p < 0.01). In conclusion, the combination treatment revealed an improved treatment effect that significantly enhanced the complete tumour clearance not observed with the monotherapies, indicating a possible additive effect of anti-PD-1 with adjuvant AFL in treatment of SCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Camundongos , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Raios Ultravioleta , Imunoterapia/métodos , Lasers
2.
Lasers Med Sci ; 38(1): 160, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450199

RESUMO

Fractional picosecond-domain lasers (PSL) induce optical breakdown, which correlates histologically to vacuolization in the epidermis and dermis. In this ex vivo porcine study, we sought to establish a framework for the investigation of laser-tissue interactions and their dependence on melanin density. Light- (melanin index: 24.5 [0-100]), medium- (58.7), and dark-pigmented (> 98) porcine skin samples were exposed to a 755-nm fractional PSL and examined with dermoscopy, line-field confocal optical coherence tomography (LC-OCT), conventional OCT, and subsequently biopsied for digitally stained ex vivo confocal microscopy (EVCM) and histology, using hematoxylin and eosin (HE) and Warthin-Starry (WS) melanin staining. Dermoscopy showed focal whitening in medium- and dark-pigmented skin. Similarly, LC-OCT and OCT visualized melanin-dependent differences in PSL-induced tissue alterations. Vacuoles were located superficially in the epidermis in dark-pigmented skin but at or below the dermal-epidermal junction in medium-pigmented skin; in light-pigmented skin, no vacuoles were observed. Histology confirmed the presence of vacuoles surrounded by areas void of WS staining and disrupted stratum corneum in darker skin. The combined use of optical imaging for multiplanar visualization and histological techniques for examination of all skin layers may mitigate the effect of common artifacts and attain a nuanced understanding of melanin-dependent laser-tissue interactions.


Assuntos
Lasers de Estado Sólido , Melaninas , Animais , Suínos , Pele/diagnóstico por imagem , Pele/patologia , Microscopia Confocal/métodos , Tomografia de Coerência Óptica/métodos , Técnicas Histológicas
4.
Cancers (Basel) ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497301

RESUMO

The use of immune checkpoint inhibitors (ICI) is expanding with the approval for advanced/metastatic keratinocyte carcinoma; however, most tumors are non-aggressive. Local administration could broaden ICI, but adequate immune response might require an immune-attractive adjuvant such as ablative fractional laser (AFL). Accordingly, this study aimed to explore intratumoral injection of anti-PD1 with and without AFL in basal cell carcinoma (BCC), exploring anti-PD1 concentration, immune cell infiltration, tumor response, and safety. This open-label, proof-of-concept trial investigated intratumoral anti-PD1 + AFL combination therapy versus anti-PD1 or AFL monotherapy in 28 BCC patients. The primary endpoints were immune cell infiltration evaluated immunohistochemically and clinical tumor response after 3 months. The secondary outcomes were tumoral drug concentration and safety. The most robust response was obtained following intervention with combined anti-PD1+AFL, leading to a ~2.5-fold increase in CD3+ cells (p = 0.027), and tumor reduction ≥25% in 73%, including two tumors with complete remission. Upon anti-PD1 monotherapy, a slight decrease in CD3+ cells was observed while a non-significant increase following AFL was seen. Tumor reduction ≥25% was seen in 45% and 50%, respectively, after anti-PD1 and AFL monotherapy. The CD8/CD3 ratio remained unchanged after anti-PD1+AFL and anti-PD1 monotherapy, while AFL led to a decreased ratio. A non-significant decline in the Foxp3/CD3 ratio was observed for all groups. Side-effects were mild with no systemic drug concentration detected. Intratumoral anti-PD1 injection is feasible, and a single exposure to locally injected anti-PD1 with adjuvant AFL increased immune cell infiltration and reduction in BCC with limited side-effects.

5.
Pharmaceutics ; 14(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893793

RESUMO

The skin barrier generally limits the topical delivery of hydrophilic molecules. Ablative fractional laser (AFL) facilitates cutaneous drug uptake of smaller hydrophilic compounds in several studies. In this imaging-based study, we aim to investigate the cutaneous biodistribution of two different-sized hydrophilic compounds delivered by an ablative fractional CO2 laser at minimally invasive settings. Intact or CO2 AFL-pretreated (2.5 mJ/mb and 5% density) ex vivo porcine skin was topically applied with a large or small hydrophilic compound (fluorescence labeled antibody nivolumab (150,000 g/mol, n = 4) or ATTO 647N (746 g/mol, n = 3)). Samples were incubated for 20 h in a Franz cell setup, whereafter optical coherence tomography (OCT) was used to assess laser channel depth, and ex vivo confocal microscopy (EVCM) was used to assess epidermal thickness and cutaneous biodistribution of nivolumab and ATTO 647N. With an EVCM-assessed median epidermal thickness of 70.3 µm and OCT-assessed ablation depth of 31.9 µm, minimally invasive settings enabled shallow penetration into the mid-epidermis. The AFL-assisted uptake of the antibody nivolumab and the smaller compound ATTO 647N showed a similar homogenous and horizontal band-like biodistribution pattern that reached mid-dermis. No uptake of nivolumab or ATTO 647N was observed in intact skin. In conclusion, AFL-induced mid-epidermal laser channels facilitates the cutaneous delivery of two hydrophilic compounds that are distributed in a similar homogeneous and horizontal band-like pattern, irrespective of their molecular size.

6.
Skin Res Technol ; 28(4): 564-570, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35411961

RESUMO

BACKGROUND: Ex-vivo confocal microscopy (EVCM) enables examination of tissue alterations immediately after treatment with energy-based devices (EBDs). This proof-of-concept study aimed to describe EBD-induced tissue effects in ex-vivo porcine skin after treatment with microneedle radiofrequency (MNRF) and ablative fractional CO2 -laser (AFL) using EVCM. MATERIALS AND METHODS: Ex-vivo porcine skin was treated with MNRF and AFL. Three cryosections from each intervention were stained with acridine orange (AO) and scanned with EVCM. Reflectance confocal microscopy (RCM, 638 nm) and fluorescence confocal microscopy (FCM, 488 nm) images were captured and evaluated individually, after image fusion, and after digital hematoxylin and eosin (H&E) staining. RESULTS: Bimodal EVCM was able to visualize EBD-induced thermal alterations in porcine skin. In RCM mode, the full width and depth of the vertically aligned microscopic treatment zones (MTZs) were displayed with clear demarcation to surrounding intact skin. In FCM mode, the ablation of the epidermis after AFL was prominent in contrast with the almost intact epidermis observed in MNRF treated skin. In fusion mode, fluorescence signal from AO marked the surrounding coagulation zone (CZ) from both interventions, with enhanced discrimination between ablation and coagulation. Digitally H&E-stained images closely resembled conventional histopathology but proved superior in terms of visualization of the CZ. CONCLUSION: Bimodal EVCM with digital H&E-staining facilitates the identification and qualitative evaluation of thermal alterations induced by treatment with EBD. By providing high-resolution images comparable to standard histology, EVCM is a useful tool in the research and development of EBD to visualize and evaluate device-tissue interactions.


Assuntos
Epiderme , Pele , Animais , Microscopia Confocal/métodos , Microscopia de Fluorescência , Pele/diagnóstico por imagem , Pele/patologia , Coloração e Rotulagem , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...